Effectiveness of the single‐shot dual‐energy subtraction technique for portal images
نویسندگان
چکیده
The aim of the present study was to evaluate the clinical efficacy of the single-shot dual-energy subtraction technique for obtaining portal images. We prepared two storage phosphor plates for this study. A 1 mm thick tungsten sheet was placed between the two storage phosphor plates. A single use of the double-exposure technique provides two portal images simultaneously (i.e., a standard image and a low-contrast image), using the same patient position and with no additional radiation delivered to the patient. A bone-enhanced image is created by image subtraction between these two images. For evaluation of clinical efficacy, three treatment sites--the brain, lung, and pelvis--were imaged. Ten sets of images were obtained for each site, and five landmarks were selected for each treatment site. The visibility of each landmark and the ease of overall verification for the selected treatment sites were assessed separately for the standard and bone-enhanced images. Four observers consisting of one radiation oncologist and three radiation therapists participated in the present study. For most of the landmarks studied, the bone-enhanced images were significantly superior to the standard images. Regarding the ease of overall verification, the bone-enhanced images were significantly superior to the standard images at all sites. The p-values of mean rating for the brain, lung, and pelvis were 0.002, 0.012, and 0.003, respectively. The bone-enhanced images obtained using our technique increased the image quality in terms of bone visibility, and are considered useful for routine clinical practice.
منابع مشابه
Single-shot dual-energy subtraction mammography with electronic spectrum splitting: feasibility.
We present a single-shot dual-energy subtraction mammography technique using an energy sensitive photon counting detector. An electronic threshold near the middle of the X-ray spectrum discriminates between high- and low-energy photons, and allows the simultaneous acquisition of high- and low-energy images which can be combined to suppress anatomical clutter. By setting the electronic threshold...
متن کاملFeasibility of Active Sandwich Detectors for Single-Shot Dual-Energy Imaging∗
We revisit the doubly-layered sandwich detector con guration for single-shot dual-energy x-ray imaging. In order to understand its proper operation, we investigated the contrast-to-noise performance in terms of the x-ray beam setup using the Monte Carlo methods. Using a pair of active photodiode arrays coupled to phosphor screens, we have built a sandwich detector. For better spectral separatio...
متن کاملEvaluation of Simultaneous Dual-radioisotope SPECT Imaging Using 18F-fluorodeoxyglucose and 99mTc-tetrofosmin
Objective(s): Use of a positron emission tomography (PET)/single-photonemission computed tomography (SPECT) system facilitates the simultaneousacquisition of images with fluorine-18 fluorodeoxyglucose (18F-FDG) andtechnetium (99mTc)-tetrofosmin. However, 18F has a short half-life, and 511keV Compton-scattered photons are detected in the 99mTc energy window.Therefore, in this study, we aimed to ...
متن کاملeview ual energy subtraction : Principles and clinical applications
Two technical solutions using single or dual shot offer different advantages and disadvantages for dual eceived 1 March 2009 ccepted 23 March 2009
متن کاملبررسی امکان تشخیص اتوماتیک میکروکلسیم های بافت پستان با استفاده از تکنیک دو انرژی تصویربرداری اشعه ایکس جهت تشخیص زودرس سرطان پستان
Background and purpose: Dual-energy mammography technique is used for improving the accuracy of breast cancer diagnosis especially in dense breast cases and also detection of micro-calcifications which are early signs of breast cancer. The purpose of this study was to investigate the automatic separation feasibility of micro-calcification images in breast tissue images and evaluating its accura...
متن کامل